A humanized monoclonal antibody that inhibits platelet‐surface ERp72 reveals a role for ERp72 in thrombosis
نویسندگان
چکیده
Essentials ERp72 is a thiol isomerase enzyme. ERp72 levels increase at the platelet surface during platelet activation. We generated a humanized monoclonal antibody which blocks ERp72 enzyme activity (anti-ERp72). Anti-ERp72 inhibits platelet functional responses and thrombosis. SUMMARY Background Within the endoplasmic reticulum, thiol isomerase enzymes modulate the formation and rearrangement of disulfide bonds in newly folded proteins entering the secretory pathway to ensure correct protein folding. In addition to their intracellular importance, thiol isomerases have been recently identified to be present on the surface of a number of cell types where they are important for cell function. Several thiol isomerases are known to be present on the resting platelet surface, including PDI, ERp5 and ERp57, and levels are increased following platelet activation. Inhibition of the catalytic activity of these enzymes results in diminished platelet function and thrombosis. Aim We previously determined that ERp72 is present at the resting platelet surface and levels increase upon platelet activation; however, its functional role on the cell surface was unclear. We aimed to investigate the role of ERp72 in platelet function and its role in thrombosis. Methods Using HuCAL technology, fully humanized Fc-null anti-ERp72 antibodies were generated. Eleven antibodies were screened for their ability to inhibit ERp72 activity and the most potent inhibitory antibody (anti-ERp72) selected for further testing in platelet functional assays. Results and conclusions Anti-ERp72 inhibited platelet aggregation, granule secretion, calcium mobilisation and integrin activation, revealing an important role for extracellular ERp72 in the regulation of platelet activation. Consistent with this, infusion of anti-ERp72 into mice protected against thrombosis.
منابع مشابه
The disulfide isomerase ERp72 supports arterial thrombosis in mice.
Several CGHC motif-containing disulfide isomerases support thrombosis. We here report that endoplasmic reticulum protein 72 (ERp72), with 3 CGHC redox-active sites (ao, a, and a'), supports thrombosis. We generated a new conditional knockout mouse model and found that Tie2-Cre/ERp72fl/fl mice with blood and endothelial cells lacking ERp72 had prolonged tail bleeding times and decreased platelet...
متن کاملProtein degradation by ERp72 from rat and mouse liver endoplasmic reticulum.
The endoplasmic reticulum (ER) resident protein, ER60, is a member of the protein disulfide-isomerase family and contains two copies of the internal thioredoxin motif, CGHC. Previously, ER60 was identified as a cysteine protease and named ER-60 protease (Urade, R., Nasu, M., Moriyama, T., Wada, K., and Kito, M. (1992) J. Biol. Chem. 267, 15152-15159; Urade, R., and Kito, M. (1992) FEBS Lett. 31...
متن کاملERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase.
We have cloned, sequenced, and expressed full length cDNA clones encoding two abundant, luminal endoplasmic reticulum proteins (ERp), ERp59/PDI and ERp72. ERp59/PDI has been identified as the microsomal enzyme protein disulfide isomerase (PDI). An analysis of the amino acid sequence of ERp72 showed that it shared sequence identity with ERp59/PDI at three discrete regions, having three copies of...
متن کاملA possible biochemical link between NADPH oxidase (Nox) 1 redox-signalling and ERp72.
Emerging evidence indicates that Nox (NADPH oxidase) 1-generated ROS (reactive oxygen species) play critical regulatory roles in various cellular processes, yet little is known of direct targets for the oxidase. In the present study we show that one of the proteins selectively oxidized in response to Nox1-generated ROS was ERp72 (endoplasmic reticulum protein 72 kDa) with TRX (thioredoxin) homo...
متن کاملTherapeutic Applications of Monoclonal Antibodies in Multiple Sclerosis
Despite the various therapies available, the use of monoclonal antibodies is a highly specific approach that has only recently been of interest to researchers. The properties of antibodies have led to their use in the treatment of various diseases, including cancer, Alzheimer's disease, diabetes and multiple sclerosis (MS). MS, a chronic inflammatory disease, occurs commonly in young adults. Th...
متن کامل